市場調査レポート
商品コード
1745942

未来のヘルスケアに向けたハイドロゲル:医療・フィットネス・ウェルネス・動物医療用途 (2025~2045年)

Hydrogels for Future Healthcare: Medical, Fitness, Wellness, Veterinary Applications 2025-2045


出版日
発行
Zhar Research
ページ情報
英文 240 Pages
納期
即日から翌営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.36円
未来のヘルスケアに向けたハイドロゲル:医療・フィットネス・ウェルネス・動物医療用途 (2025~2045年)
出版日: 2025年06月11日
発行: Zhar Research
ページ情報: 英文 240 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

長寿と生活の質

私たちの孫たちの多くは、120歳まで生きることができ、ハイドロゲルによる最新の驚異的な進歩によって、はるかに良質な生活を享受できるようになるかもしれません。

2つの並行するトレンド

筆頭著者であるピーター・ハロップ博士は次のように述べています。「2つの並行するトレンドが、ヘルスケア用ハイドロゲル市場を2025年の370億ドルから2045年には1,540億ドルへと力強く成長させる原動力となります。 パッド、紙おむつ、コンタクトレンズといった成熟製品が新興国に普及していきます。他方で、先進国では、麻痺のある人が動けるようになる、視覚障害者が視力を取り戻す、機能不全の臓器が置き換えられるなど、革新的な進歩が積極的に導入されていきます。これを可能にするために、複合材料、天然/合成のハイブリッド、汎用ハイドロゲルなど、新しい無機ハイドロゲルが急速に登場しています。さらに将来的には、手術で使用されるエンジニアードリビングマテリアルのためのハイドロゲル足場材までもが登場するでしょう。」

当レポートは、ヘルスケア用ハイドロゲルの市場を調査し、背景、医療・非医療分野における用途、最先端の研究動向、市場規模の予測、専門家へのインタビュー、事業機会、潜在的パートナー、競合企業などの分析をまとめています。

目次

第1章 エグゼクティブサマリー・総論

第2章 イントロダクション

  • 背景
  • 2025年に進歩するヘルスケアハイドロゲルの処方
  • ゲルという言葉に関する注記
  • 制限事項
  • 天然 vs 合成
  • ハイドロゲルの毒性物質が問題となる理由
  • 医療分野におけるハイドロゲルの進展と応用例23件
  • 医療以外の6分野におけるヘルスケア関連ハイドロゲルの応用例19件
  • 創傷治癒の進展
  • ハイドロゲルの製造技術の進化(3D・4Dプリンティングを含む)

第3章 ヘルスケアのためのハイドロゲルツールキット

  • 概要
  • ハイドロゲルのSWOT評価:現時点での立ち位置
  • ハイドロゲル市場の拡大状況を示す図表
  • ハイドロゲルの分子レベルのツールキットとそのトレンド
  • 新たに登場する6種類のハイドロゲル化学および機能性のファミリー
  • 6つの分野にわたるハイドロゲルの将来を支える技術カテゴリー
  • シリコーンおよびポリウレタンのハイドロゲルとの競合と統合の可能性
  • 最新研究で他の新興材料はハイドロゲルとどう競合しているか
  • ハイドロゲル改良の最も有望な方向性
  • エラストマーハイドロゲルシステム(EHS)
  • ハイブリッド型ハイドロゲル
  • インフォグラフィック付きの自己修復型ハイドロゲルとそのSWOT評価

第4章 未来のハイドロゲル:冷却、医薬品、義肢、治療用途、その他

  • 概要
  • インフォグラム:新たな冷却・熱管理のニーズ
  • 5つのインフォグラム:冷却ツールキットとハイドロゲルの機会
  • ハイドロゲルによる蒸発冷却
  • ヘルスケアeエレクトロニクス、6G通信、太陽光パネルの冷却における将来のハイドロゲル技術
  • 有用水回収を含む太陽光パネルのハイドロゲル冷却
  • 建築冷却における独創的な新しいハイドロゲル
  • エアロゲルとハイドロゲルの組み合わせによる医薬品冷却
  • ソフトロボティクス、義肢用の自己冷却スマートアクチュエータ
  • ヘルスケアの課題に関連するその他の冷却ハイドロゲル

第5章 自己修復機能を含む未来のヘルスケアハイドロゲルの実用化

  • 定義と焦点
  • 自己治癒の基本
  • エンジニアリングとヘルスケアにおける自己修復ハイドロゲルの重要性
  • 自己修復材料のSWOT評価
  • 自己修復ハイドロゲルの技術オプション
  • 実際および潜在的な自己修復用途における代替品に対するハイドロゲルの競争力
  • 2025~2045年の研究パイプラインにおける重要な事例

第6章 将来のハイドロゲル膜、皮膚、フィルム:イオン交換、ガス分離、その他

  • 概要
  • 膜の難しさのレベルと自己修復の必要性
  • 最近の研究における自己修復膜化学
  • 基礎
  • 建築用および音響用膜
  • バッテリー、スーパーキャパシタ、燃料電池セパレータ、電解質膜
  • 人間とロボットのためのeスキン
  • ガス分離
  • イオン伝導体
  • 限外濾過膜

第7章 将来のハイドロゲルフレキシブルエレクトロニクス、センサー、固体エネルギー貯蔵

  • 概要
  • フレキシブルおよび固体エネルギー貯蔵の例
  • バイオテクノロジーおよび環境用途の磁気応答性ハイドロゲル
  • センサーとセンシング
  • トランジスタ
  • 電子機器用熱ハイドロゲル

第8章 ハイドロゲルを用いたELM (エンジニアードリビングマテリアル) と競合するELM

  • 概要
  • 自然から学ぶ
  • 代表的な特徴と素材
  • 分類
  • 障害と前進への道
  • ELM研究における生体材料の例

第9章 ヘルスケアインフラと水管理における将来のハイドロゲル材料

  • 概要
  • コンクリートおよびその他のセメント質材料
  • ハイドロゲルを使用した安全な飲料水
  • 空気から有用な水を抽出するハイドロゲルと代替品
  • 再利用可能ハイドロゲルによる貴金属回収
目次

Summary

Longevity, quality of life

Many of our grandchildren may live to 120 years and have a far better quality of life due to latest heroic achievements with hydrogels. A unique new Zhar Research report looks deeply into latest 2025 research and its interviews with PhD level analysis and forecasting, revealing your opportunities, potential partners and competition for both the materials and devices emerging. It is commercially oriented, 320-page, "Hydrogels for Future Healthcare: Medical, Fitness, Wellness, Veterinary Applications 2025-2045".

Two parallel trends

Primary author, Dr Peter Harrop says, "Two parallel trends drive robust growth of the healthcare hydrogel market from $37 billion in 2025 to $154 billion in 2045. The mature products such as pads, diapers and contact lenses will be adopted by emerging countries. Advanced countries will eagerly adopt new advances enabling the paralysed to function, the blind to see, failed organs to be replaced and much more. New inanimate hydrogels are rapidly arriving to achieve this, including composites, hybrid natural/ synthetic and multipurpose hydrogels but later years will even see hydrogel scaffolds for Engineered Living Materials employed in surgery."

Complete summary

The Executive Summary and Conclusions (36-pages) is enough for those in a hurry, for here are the 16 primary conclusions, the emerging technologies and market dynamics in detailed new infograms, 21 forecast lines and roadmap 2025-2045. See problems that are your opportunities such as replacing toxigen intermediaries.

Deep analysis for materials and hardware suppliers

The Introduction (22 pages) briefly gives the long history and companies involved today then more detail on the many benefits, market drivers and formulations for healthcare hydrogels with advances in 2025. What are currently the popular choices and why is the biomimetic approach very useful? Why should we be beware of the term gel and recognise many toxigen and performance limitations of current hydrogels? See 23 examples of medical hydrogel advances and applications and 19 examples of other healthcare-related hydrogel applications in six sectors beyond medical. Other topics introduced are natural vs synthetic, wound healing advances in 2025 and evolving production technologies for hydrogels including 3D and 4D printing in 2025.

Comprehensive toolkit emerging with examples of medical achievements

Chapter 3. Hydrogel Toolkit for Healthcare 2025-2045 (30 detailed pages) to explain all this in detail including six families of hydrogel chemistry and functionality and subsets such as Elastomer Hydrogel Systems EHS. Commercial emphasis is enhanced by some latest research advances in wound healing, sensorised and rejuvenated skin, easing Crohn's disease, and restoring vision, with Zhar Research analysis.

Healthcare cooling hydrogels

Chapter 4. Future Hydrogels that Cool: Pharmaceutical, Prosthetic, Therapeutic, other (33 pages) appraises this commercially important aspect. Six infograms display major new cooling and thermal management needs arriving 2025-2045, the cooling toolkit and the hydrogel opportunity. Understand hydrogel evaporative cooling in general with ambitions, limitations. What about future hydrogel technologies, even cooling of healthcare electronics, use of hydrogel-silica aerogel, thermogalvanic hydrogel for synchronous evaporative cooling and latest 2025 research advances? Healthcare facilities may employ hydrogel windows to block and store heat, use aerogel and hydrogel together cool pharmaceuticals. Expect self-cooling smart actuators for soft robotics and prosthetics and learn other cooling hydrogels relevant to healthcare challenges 2025-2045.

Healthcare self-healing hydrogels and more

Chapter 5. Future Healthcare Hydrogels in Action, Including Self-healing Function, with 81 pages, looks more generally at the future applications, mostly revealing the great importance of self-healing hydrogels. Understand the science of intrinsic and extrinsic self-healing and the value chain. See types of damage addressed with examples such as skin, bone regeneration, wound healing, cancer therapy and drug delivery with hydrogels, including injectables, but the dilemma of metrics for self-healing and the benefits of alternatives. A SWOT appraisal is followed by important examples in the research pipeline for 2025-2045. Self-healing healthcare electronics, sensors and nanogenerators for smart patches and implants is covered. Then comes research success with spinal cord implants for treating paralysis, soft robotics, smart prosthetics, bioelectronics and cartilage, stretchable hydrogels for protein delivery, tissue engineering, adding the impact of adhesive and self-lubricating hydrogels.

Membrane, skin, film, ELM hydrogels emerging

Chapter 6. Future Hydrogel Membranes, Skin and Film: Ion-exchange, Gas separation, Other (19 pages) expands on these aspects with detailed tabular comparisons and many research advances from 2025. Zhar Research finds that almost all the market potential for healthcare hydrogels will involve inanimate forms, increasingly synthetic for tailoring to purpose but Engineered Living Material may get commercialised late in the 2025-2045 timeframe with hydrogels favourite as scaffolds on which the living material is grown for therapy on and later in humans but in competition with entirely inanimate hydrogel solutions to the same challenges. All that is covered in Chapter 8. Engineered Living Materials ELM Using or Competing with Hydrogels (29 pages). However, understand why the level of research is not increasing. The report then ends with the more peripheral topic in Chapter 9. Future Hydrogel Materials in Healthcare Infrastructure and Water Management with companies, technologies and progress involved. In the whole report, 59 companies are mentioned.

Essential reading

The latest information and in-depth analysis is essential to aid your participation in commercial healthcare hydrogels. The report, "Hydrogels for Future Healthcare: Medical, Fitness, Wellness, Veterinary Applications 2025-2045" is your essential source.

CAPTION: Hydrogel market expansion across medical. fitness, wellness sectors 2025-2045. Source, Zhar Research report, "Hydrogels for Future Healthcare: Medical, Fitness, Wellness, Veterinary Applications 2025-2045".

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose and layout of this report
  • 1.2. Methodology
  • 1.3. Infogram: hydrogel market expansion across medical. fitness, wellness sectors 2025-2045
  • 1.4. Definitions, needs and context
  • 1.5. Sixteen primary conclusions
  • 1.6. How hydrogel toxigens are an issue and an opportunity
  • 1.7. Hydrogel technology choices, examples, trends
  • 1.8. Analysis of recent research advances by material type
  • 1.9. Hydrogel SWOT appraisal
  • 1.10. Hydrogel roadmap 2025-2045 by industry sector
  • 1.11. Market forecasts 2025-2045 in 21 lines
    • 1.11.1. Healthcare hydrogel devices vs hydrogel materials market $ billion 2025-2045
    • 1.11.2. Global market for hydrogel materials: 3 sectors and total $ billion 2025-2045
    • 1.11.3. Four regions percentage of healthcare hydrogel material value market 2025-2045
    • 1.11.4. Synthetic vs natural vs hybrid % of healthcare hydrogel material value market 2025-2045
    • 1.11.5. Hydrogel enabling technology added by 5 functional categories $ billion 2025-2045
    • 1.11.6. Global healthcare expenditure vs healthcare hydrogel device market $ billion 2025-2045
    • 1.11.7. Solid-state cooling module market $ billion 2025-2045

2. Introduction

  • 2.1. Background
    • 2.1.1. Long history and companies involved today
    • 2.1.2. Many benefits
    • 2.1.3. Market drivers
    • 2.1.4. Contact lenses
  • 2.2. Formulations for healthcare hydrogels with advances in 2025
    • 2.2.1. Popular choices
    • 2.2.2. Biomimetic approach is very useful: 2025 and earlier
  • 2.3. Beware of the term gel
  • 2.4. Limitations
  • 2.5. Natural vs synthetic
  • 2.6. How hydrogel toxigens are an issue
  • 2.7. 23 examples of medical hydrogel advances and applications
  • 2.8. 19 examples of other healthcare-related hydrogel applications in six sectors beyond medical
  • 2.9. Wound healing advances in 2025
  • 2.10. Evolving production technologies for hydrogels including 3D and 4D printing in 2025

3. Hydrogel toolkit for healthcare 2025-2045

  • 3.1. Overview
  • 3.2. Hydrogel SWOT appraisal - where we are now
  • 3.3. Graphic of hydrogel market expansion across the landscape 2025-2045
  • 3.4. Hydrogel molecular toolkit and trends
  • 3.6. Six families of emerging hydrogel chemistry and functionality
  • 3.7. Future hydrogel enabling technology by six other categories covered in later chapters
  • 3.8. How silicones and polyurethanes will both compete with and combine with hydrogels
  • 3.9. How other emerging materials compete with hydrogels in latest research
  • 3.10. Most promising routes to improvement of hydrogels 2025-2045
    • 3.10.1. Biomimetic, composite and chemistry
    • 3.10.2. Appraisal of important new medical research: wound healing, sensorised and rejuvenated skin, easing Crohn's disease, restoring vision etc.
  • 3.11. Elastomer Hydrogel Systems EHS
    • 3.11.1. Basics
    • 3.11.2. Directly bonded or interphase
    • 3.11.13. Earlier work advancing multifunction and other elastomer hydrogels
  • 3.12. Hybrid hydrogels
  • 3.13. Self-healing hydrogels with infograms and SWOT appraisal

4. Future hydrogels that cool, pharmaceuticals, prosthetic, therapeutics, other

  • 4.1. Overview
  • 4.2. Infogram: Major new cooling and thermal management needs arrive 2025-2045
  • 4.3. Five infograms: The cooling toolkit and the hydrogel opportunity
  • 4.4. Hydrogel evaporative cooling in general
    • 4.4.1. Ambitions, limitations
    • 4.4.3. Hydrogel open evaporative cooling
  • 4.5. Future hydrogel technologies cooling of healthcare electronics, 6G telecommunications and solar panels
    • 4.5.1. Hydrogel-silica aerogel
    • 4.5.2. Thermogalvanic hydrogel for synchronous evaporative cooling
  • 4.6. Hydrogel cooling of solar panels including gathering useful water
  • 4.7. Imaginative new hydrogels in architectural cooling
    • 4.7.1. Hydroceramic hydrogel cooling architectural structure
    • 4.7.2. Hydrogel windows to block and store heat
  • 4.8. Aerogel and hydrogel together cool pharmaceuticals etc.
  • 4.9. Self-cooling smart actuator for soft robotics, prosthetics
  • 4.10. Other cooling hydrogels relevant to healthcare challenges 2025-2045

5. Future healthcare hydrogels in action, including self-healing function

  • 5.1. Definitions and focus
  • 5.2. Self-healing basics
    • 5.2.1. Self- healing material market drivers
    • 5.2.2. Intrinsic or extrinsic self-healing and value chain
    • 5.2.3. Types of damage addressed with examples: skin, bone, drug delivery
    • 5.2.4. The dilemma of metrics
  • 5.3. Importance of self-healing hydrogels in engineering and healthcare
  • 5.4. SWOT appraisal of self-healing materials in 2025
  • 5.5. Technology options for self-healing hydrogels
    • 5.5.1. Overview with wound-healing example
    • 5.5.2. Physical self-healing in hydrogels
    • 5.5.3. Chemical self-healing in hydrogels
  • 5.6. Hydrogel competitive place against alternatives in actual and potential self-healing applications
  • 5.7. Important examples in the research pipeline for 2025-2045
    • 5.7.1. Anti-fouling, water-oil separation, liquid transportation
    • 5.7.2. Bone regeneration
    • 5.7.3. Drug-delivery and cancer therapy injectable hydrogels
    • 5.7.4. Electrical conductors for electronics and medical purposes
    • 5.7.5. Remote near-infrared-responsive controls
    • 5.7.6. Self-lubricating water-based polymeric systems
    • 5.7.7. Self-healing sensors
    • 5.7.8. Solid state and other electrolytes
    • 5.7.9. Spinal cord implants for treating paralysis
    • 5.7.10. Soft robotics, smart prosthetics, bioelectronics, cartilage
    • 5.7.11. Stretchable hydrogels for protein delivery etc.
    • 5.7.12. Tissue engineering
    • 5.7.13. Triboelectric and piezoelectric hydrogel nanogenerators
    • 5.7.14. Adhesive hydrogels

6. Future hydrogel membranes, skin and film: ion-exchange, gas separation, other

  • 6.1. Overview
  • 6.2. Membrane difficulty levels and needs for self-healing
  • 6.3. Self-healing membrane chemistry in recent studies
  • 6.4. Basics
  • 6.5. Architectural and acoustic membranes
  • 6.6. Battery, supercapacitor, fuel cell separators and electrolyte membrane
  • 6.7. Electronic skin, e-skin for humans and robots
    • 6.7.1. Overview
    • 6.7.2. Hydrogel e-skin
  • 6.8. Gas separation
    • 6.8.1. Carbon dioxide
    • 6.8.2. General
  • 6.9. Ionic conductors
  • 6.10. Ultrafiltration membrane

7. Future hydrogel flexible electronics, sensors and solid-state energy storage

  • 7.1. Overview
    • 7.1.1. Motivation
    • 7.1.2. Chosen chemical routes: carbon, polymer, biopolymer, biomass
    • 7.1.3. Biopolymer hydrogel routes
  • 7.2. Flexible and solid-state energy storage examples
    • 7.2.1. Zinc-air battery electrolyte
    • 7.2.2. Supercapacitors, fuel cells and water electrolysers
    • 7.2.3. Biopolymer-based hydrogel electrolytes
    • 7.2.4. Supercapacitors
  • 7.3. Magneto-responsive hydrogels for biotechnological and environmental applications
  • 7.4. Sensors and sensing
  • 7.5. Transistors
  • 7.6. Thermal hydrogels for electronics

8. Engineered Living Materials ELM using or competing with hydrogels

  • 8.1. Overview
    • 8.1.1. Engineered Living Materials ELM with SWOT appraisal
    • 8.1.2. Hydrogels popular in Engineered Living Materials ELM
    • 8.1.3. Engineered Living Hydrogels ELH and their competition
    • 8.1.4. ELM hype curve 2025-2045
    • 8.1.5. Infogram: Some features of engineered living materials
  • 8.2. Learning from nature
  • 8.3. Typical features and materials
  • 8.4. Taxonomy
  • 8.5. Obstacles and the way forward
    • 8.5.1. Obstacles
    • 8.5.2. Bio ELM vs hybrid ELM
    • 8.5.3. Examples of specific approaches
  • 8.6. Examples of living material in ELM research
    • 8.6.1. Funghi-mycelial materials
    • 8.6.2. Bacterial
    • 8.6.3. Other examples of self-healing ELM research
    • 8.6.4. Further reading

9. Future hydrogel materials in healthcare infrastructure and water management

  • 9.1. Overview
  • 9.2. Concrete and other cementitious materials
    • 9.2.1. Inducing hydrogel in concrete
    • 9.2.2. Aquron and Markham New Zealand
    • 9.2.3. Hydrogel Concrete Solutions Australia
    • 9.2.4. Intelligent Concrete USA
    • 9.2.5. Polyacrylic hydrogel in cement composites
    • 9.2.6. Hydrogels containing nanosilica enhance cement pastes
    • 9.2.7. Improved concrete using hydrogel-based internal curing agents
  • 9.3. Safe drinking water using hydrogels
  • 9.4. Hydrogels and alternatives extracting useful water from the air
    • 9.4.1. Metal oxide frameworks competing with hydrogels
    • 9.4.2. Water harvesting even while warming
  • 9.5. Precious metal recovery with reusable hydrogel